

VENTILATION GUIDELINES CALCULATIONS

These guidelines were developed for people trained or skilled in ventilation management to apply these concepts.

1. VENTILATION GOALS REFERENCE

Table 1

Inlet Ventilation	Units	Weaned Pigs	50-65lb	275-285lb
a) Minimum ventilation	CFM/pig	2.0	3.0-4.5	13.0-14.0
b) Air speed at ceiling inlet	FPM	400-800	600-800	600-800
c) Air speed at wall inlet	FPM	600-800	700-900	
d) Inlet capacity	CFM/pig		35-50	

Table 2

Maximum Ventilation	Units	Tunnel
a) Tunnel air speed	FPM	350-450
b) Air exchange rate	seconds	30-35
c) Air Speed at curtain in tunnel	FPM	650-800
d) Air Speed at cooling pad	FPM	350-400

Table 3

Fan Power (w/cone)	Reference of CFM*				
18 inches	3,600-4,000				
24 inches	6,000-7,000				
36 inches	10,000-11,000				
50 inches	20,000-22,000				
52 inches	24,000-25,000				

^{*}Ventilation companies have an accurate fan capacity (use 0.05-0.1 SP)

Table 4

Controller Setting in Variable Fans (VF)	Reference of % real Extraction*
100%	100%
85%	85%
75%	75%
70%	68%
65%	61%
60%	54%
55%	45%
50%	35%

^{*}New VF technologies is increasing the extraction efficiency with low speed mode

Table 5

Humidity Level	<65%				

2. MINIMUM VENTILATION (MinV.)

2.1 Key Points

- Minimum air volume that should be exchanged to control humidity and gases
- It is important that systems be set-up to never drop below these air exchange rates
- MinV. operates anytime room temperatures are below the set point, therefore operating in cold weather
- MinV. is measured in CFM/pig which increases as pig weights increase.

2.2 Minimum Ventilation Calculations

Number of pigs/barn x CFM/pig (Table 1) = Total CFM needs of Minimum Ventilation per Barn

Example: Weaned Pigs (12lb) 1,000 pigs/barn x 2 CFM/pig = 2,000 CFM/Barn

Market Pigs (295lb) 1,000 pigs/barn x 14 CFM/pig= 14,000 CFM/Barn

2.3 Using Minimum Ventilation Calculations

MinV. rate will be achieved when the exhaust fan power is paired with the minimum ventilation calculations.

2.4 Fan Power Calculations for MinV.

Step 1: Define <u>how many exhaust fans</u> will be used for MinV. They must be able to properly ventilate entire barn area therefore, to ensure a correct ventilation rate, <u>an anemometer must be used to verify the selected fans</u> are capable of extracting desired air from the furthest inlet. Example:

Step 2: Determine Fan Power = CFM per Fan. A fan power reference guide is shown in Table 3.

Step 3: Calculation of percentage of speed in variable fans or time on/off in fans working by timer

% of Fan Speed = (Total CFM needs of MinV./Barn, reference point 2.2) / (Total CFM Fan Power)

Example (continuing example, reference point 2.2)

Step 1: Minimum ventilation needs to use 4 – 24" fans to cover the entire barn

Step 2: 24" fans have 6,000 CFM/fan (w/cone)

Step 3: 14,000 CFM per Barn / (4 fans x 6,000 CFM/fan) = 58% of Speed (for Market Pigs at 295lb)

"% of Fan" Interpretation:

Variable Fan: Results are based on Table 4

% of Fan Speed= 58% required, then in the controller VF will be set to 63-65%

• Timer: Results should be multiplied by the seconds used as cycle to get the time ON

Time On/Off of Fan = $58\% \times 300 \text{ seconds*/cycle} = 180 \text{ seconds ON and } 120 \text{ seconds OFF**}$

*When operated by timer, a cycle of 300 seconds is a good standard. It can be more or less depending on the humidity and room size. **Increments of 15 seconds are standard.

Key consideration for exhaust fan power

- It isn't recommended to use less than 50% of speed setting in the controller for VF
- At controller, settings below 75% extraction power of variable fans is less than the setting %. See Table 4

2.5 Air Speed at Inlet

- Table 1 shows desired air speed at inlet measure at inlet air outlet
- Independent of ventilation stage by inlet, the air speed at inlet should be kept constant

3. MAXIMUM VENTILATION IN TUNNEL MODE (MaxV.)

3.1 Key Points

- Maximum Ventilation is the highest practical rate for hot weather conditions.
- Once the outdoor temperature exceeds the target indoor temperature, the best that the ventilation system can do is to move enough air to maintain indoor conditions only a few degrees warmer than the outside conditions. In the case of tunnel, the air speed plays an important role as "Wind Chill Effect".
- Pigs have maximum ventilation needs; however, when operated by tunnel mode the air exchange rate and the average of air speed are considered for all calculations. (Refer to Table 2)

3.2 Important Air Speed Measures

- Air speed at curtain and panel can provide a good daily reference on proper maximum ventilation
- Air speed goal definition is a key decision (Refer to Table 2)
- Use an anemometer to verify if the maximum ventilation is working properly

4. INLET OPENING

4.1 Key Points

- Inlet opening defines fresh air mixing into barn and the static pressure level
- Inlet opening is determined by the air speed goal

4.2 Inlet Opening Calculations (these calculations are used only for inlet calibration or ventilation system design)

Step 1: Determine CFM/fan. Reference is shown in Table 3.

Step 2: Determine CFM/ventilation stage.

Step 3: Define the air speed goal. Reference shown in Table 1.

Step 4: Calculate total inlet opening area needed:

Total inlet opening area needed= (Total CFM/stage) / (Air speed goal, FPM)

Step 5: Calculate total inlet length:

Total inlet length, feet = $(Number\ of\ inlets/room\ x\ inlet\ length,\ inches\ x\ sides/inlet)/12$

Step 6: Calculation of inlet opening for ventilation stage:

Inlet opening, inches = (Total of inlets opening area needed, sqft / Total inlet's length, feet) x 12

Example (continuing example, reference point 2.2)

Step 1: Using 24" fans (6,000 CFM/fan) and 36" fans (10,000 CFM/fan). Table 3

Step 2: 4 - 24'' fans + 1 - 36'' fan; $4 \times 6,000$ CFM/fan + $1 \times 10,000$ CFM/fan = 34,000 CFM

Step 3: 800 FPM (table 1.b)

Step 4: 34,000 CFM / 800 FPM = 42.5 sqft of inlet opening are needed

Step 5: (24 inlets x 32 inches length/side x 2 sides/inlet = 1,536 inches of total inlet length)/12 = 128 ft.

Step 6: 42.5 sqft / 128 ft x 12 = 4.0 inches

• Interpretation: At 34,000 CFM fan power, each inlet side should open by 4 inches to achieve 800 FPM of air speed at inlet

5. SOFFIT

5.1 Key Points

- The general rule states that the soffit area should be double of inlet area
- Bird netting is recommended. Soffit panel design used in houses is not recommended
- The soffit area feeds the ventilation system with fresh air and can't be restricted

6. VENTILATION THROUBLESHOOTING

Indicator	Most Frequent Reasons	Main Consequence
Air Speed > Goal	 High static pressure situation Not enough inlet/curtain opening Dirty cooling pad or not enough cooling pad area Wrong inlet/curtain/panel or controller setting Inlet/curtain calibration problems 	 Air drafts Barn integrity Discomfort in people and pigs
Air Speed < Goal	 Low static pressure situation Infiltration issues Incorrect inlet/curtain opening Fan power problems ✓ Dirty shutters/louvers/fans ✓ Soft belts ✓ Voltage Distance between fans and inlets Soffit restriction Manure levels Wrong inlet/curtain/panel or controller setting Inlet/curtain calibration problems 	 Air drafts Incorrect air mixing Incorrect humidity removal Wasted electricity Potential fan motor risks Poor ventilation rates with both performance and pig behavior consequences
Humidity>65% High Gases Levels	 Wrong controller setting Incorrect air exchange measured as air speed at inlet Not enough time ON or cycle time when fans working by timer are used Incorrect cooling pad setting Challenges with temperature curve definition 	 Poor pig performance and behavior problems Potential health problems Human health Risk Animal welfare considerations Maintenance problems

7. VENTILATION PROGRAM FORMAT

Step 1: Fan Power & CFM/pig

Example: 1,000 market pigs/barn, Minimum Ventilation Goal 14 CFM/pig

		24"	Fans – Variable			36" F	an			52" Fans		Total	CFM/
Stage	Qty	CFM/ fan	% Extraction ^a	Total CFM	Qty	CFM/ fan	% Extraction ^a	Total CFM	Qty	CFM/ Fan	Total CFM	CFM/stage	pig
1	4	6,000	58%	13,920	-	-	-	-	-	-	-	13,920	13.9
2	4	6,000	100%	24,000	-	-	-	-	-	-	-	24,000	24.0
3	4	6,000	100%	24,000	1	10,000	100%	10,000	-	-	-	34,000	34.0
4	4	6,000	100%	24,000	1	10,000	100%	10,000	1	24,000	24,000	58,000	60.0
5	4	6,000	100%	24,000	1	10,000	100%	10,000	2	24,000	48,000	82,000	82.0
6	0	6,000	100%	0	1	10,000	100%	10,000	4	24,000	96,000	106,000	106.0

Note: aCheck Table 4

Step 2: Inlet & Curtain Opening

Example: 128 feet of inlet length and 800 FPM of air speed goal at inlets with a maximum opening of 7 inches/inlet side

	, , ,	, , ,	1 3 7
Stage	CFM/Stage	SQFT Needs by Inlets (800 FPM goal)	Inlet Opening (128 ft of total inlet length
1	13,920	13,920 CFM / 800 FPM	(17.4 sqft / 128 ft) x 12
Inlet		17.4 sqft	1.6" of inlet opening
2	24,000	24,000 CFM / 800 FPM	(30.0 sqft / 128 ft) x 12
Inlet		30.0 sqft	2.8" of inlet opening
3	34,000	34,000 CFM / 800 FPM	(42.5 sqft / 128 ft) x 12
Inlet		42.5 sqft	4.0" of inlet opening
4	58,000	58,000 CFM / 800 FPM	(72.5 sqft / 128 ft) x 12
Inlet		72.5 sqft	6.8" of inlet opening (maximum opening)
Tunnel Mod	е	SQFT Needs by Tunnel (650 FPM goal)	Tunnel Curtain Opening (36 ft of total curtain length)
5 Tunnel	82,000	82,000 FM / 650 FPM 126 sqft	(126 sqft / 36 ft) 3.5 ft of curtain opening
6	106,000	106,000 CFM / 650 FPM	(163 sqft / 36 ft)
Tunnel		163 sqft	4.5 ft of curtain opening

Note: ^aCheck Table 4